13. References



R. Abernathey, J. Marshall, and D. Ferreira. The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41:2261–2278, 2011. doi:10.1175/JPO-D-11-023.1.


Adcroft, A., C. Hill, and J. Marshall. A new treatment of the coriolis terms in c-grid models at both high and low resolutions. Mon. Wea. Rev., 127:1928–1936, 1999. URL: http://mitgcm.org/pdfs/mwr_1999.pdf, doi:10.1175/1520-0493\%281999\%29127<1928:ANTOTC>2.0.CO;2.


A. Adcroft. Numerical Algorithms for use in a Dynamical Model of the Ocean. PhD thesis, Imperial College, London, 1995. URL: https://extranet.gfdl.noaa.gov/~aja/papers/adcroft_PhD_1995.pdf.


A. Adcroft and J.-M. Campin. Re-scaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modelling, 7:269–284, 2004. doi:10.1016/j.ocemod.2003.09.003.


A. Adcroft, J.-M. Campin, C. Hill, and J. Marshall. Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube. Mon. Wea. Rev., 132:2845–2863, 2004. URL: http://mitgcm.org/pdfs/mwr_2004.pdf, doi:10.1175/MWR2823.1.


A. Adcroft, C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach. Overview of the formulation and numerics of the MITgcm. In Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numerical methods for atmosphere and ocean modelling, 139–149. ECMWF, 2004. URL: http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf.


A. J. Adcroft, C. N. Hill, and J. Marshall. Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev., 125:2293–2315, 1997. URL: http://mitgcm.org/pdfs/mwr_1997.pdf, doi:10.1175/1520-0493\%281997\%29125<2293:ROTBSC>2.0.CO;2.


A. J. Adcroft and D. Marshall. How slippery are piecewise-constant coastlines in numerical ocean models? Tellus, 50(1):95–108, 1998.


T. Albrecht, M. Martin, M. Haseloff, R. Winkelmann, and A. Levermann. Parameterization for subgrid-scale motion of ice-shelf calving fronts. The Cryosphere, 5(1):35–44, 2011. URL: https://www.the-cryosphere.net/5/35/2011/, doi:10.5194/tc-5-35-2011.


A. Arakawa and V. Lamb. Computational design of the basic dynamical processes of the ucla general circulation model. Meth. Comput. Phys., 17:174–267, 1977.


K. C. Armour, J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom. Southern ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geosci., 9:549–554, 2016. doi:10.1038/ngeo2731.


X. S. Asay-Davis, S. L. Cornford, G. Durand, B. K. Galton-Fenzi, R. M. Gladstone, G. H. Gudmundsson, T. Hattermann, D. M. Holland, D. Holland, P. R. Holland, D. F. Martin, P. Mathiot, F. Pattyn, and H. Seroussi. Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1). Geosci. model dev., 9(7):2471–2497, 2016. doi:10.3929/ethz-b-000119139.


S. D. Bachman, B. Fox-Kemper, and B. Pearson. A scale-aware subgrid model for quasi-geostrophic turbulence. J. Geophys. Res. Ocean., 122(2):1529–1554, 2017. doi:10.1002/2016JC012265.


A. Beckmann, H. H. Hellmer, and R. Timmermann. A numerical model of the weddell sea: large-scale circulation and water mass distribution. J. Geophys. Res. Oceans, 104(C10):23375–23391, 1999. doi:10.1029/1999JC900194.


C. M. Bitz, M. M. Holland, A. J. Weaver, and M. Eby. Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106:2441, 2001. doi:10.1029/1999JC000113.


S. Bouillon, T. Fichefet, V. Legat, and G. Madec. The elastic-viscous-plastic method revisited. Ocean Modelling, 71(0):2–12, 2013. Arctic Ocean. doi:10.1016/j.ocemod.2013.05.013.


K. Bryan. A numerical investigation of a nonlinear model of a wind-driven ocean. J. Atmos. Sci., 20:594–606, 1963.


K. Bryan. Accelerating the convergence to equilibrium of ocean-climate models. J. Phys. Oceanogr., 14(4):666–673, 1984. doi:10.1175/1520-0485(1984)014<0666:ATCTEO>2.0.CO;2.


K. Bryan. Ocean circulation models. In M. Latif, editor, Strategies for Future Climate Research, pages 265–286. Max-Planck Institut für Meteorologie, 1991.


K. Bryan and M. D. Cox. An approximate equation of state for numerical models of ocean circulation. J. Phys. Oceanogr., 2:510–514, 1972. doi:10.1175/1520-0485(1972)002<0510:AAEOSF>2.0.CO;2.


K. Bryan and L. J. Lewis. A water mass model of the world ocean. J. Geophys. Res., 84(C5):2503–2517, 1979. doi:10.1029/JC084iC05p02503.


K. Bryan, S. Manabe, and R. C. Pacanowski. A global ocean-atmosphere climate model. part ii. the oceanic circulation. J. Phys. Oceanogr., 5:30–46, 1975.


D. M. Burridge and J. Haseler. A model for medium range weather forecasting: adiabatic formulation. Technical Report 4, ECMWF, Bracknell, U.K., 1977. URL: https://www.ecmwf.int/sites/default/files/elibrary/1977/8495-model-medium-range-weather-forecasts-adiabatic-formulation.pdf.


J.-M. Campin, A. Adcroft, C. Hill, and J. Marshall. Conservation of properties in a free-surface model. Ocean Modelling, 6:221–244, 2004. doi:10.1016/s1463-5003(03)00009-x.


J.-M. Campin, J. Marshall, and D. Ferreira. Sea ice–ocean coupling using a rescaled vertical coordinate z*. Ocean Modelling, 24(1–2):1–14, 2008. doi:10.1016/j.ocemod.2008.05.005.


K. Castro-Morales, F. Kauker, M. Losch, S. Hendricks, K. Riemann-Campe, and R. Gerdes. Sensitivity of simulated Arctic sea ice to realistic ice thickness distributions and snow parameterizations. J. Geophys. Res. Oceans, 119(1):559–571, 2014. URL: http://dx.doi.org/10.1002/2013JC009342, doi:10.1002/2013JC009342.


M-D. Chou. Parameterizations for the absorption of solar radiation by o$_2$ and co$_2$ with applications to climate studies. J. Clim., 3:209–217, 1990.


M-D. Chou. A solar radiation model for use in climate studies. J. Atmos. Sci., 49:762–772, 1992.


M-D. Chou and M. J. Suarez. An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Technical Memorandum 104606-Vol 3, National Aeronautics and Space Administration, NASA; Goddard Space Flight Center; Greenbelt (MD), 20771; USA, 1994. http://www.gmao.nasa.gov/.


B. Christianson. Reverse accumulation and attractive fixed points. Optim. Method. Softw., 9:307–322, 1994. doi:10.1080/10556789408805572.


R. H. Clarke. Observational studies in the atmospheric boundary layer. Q. J. R. Meteorol. Soc., 96:91–114, 1970.


Cox, M. D. and K. Bryan. A numerical model of the ventilated thermocline. J. Phys. Oceanogr., 14:674–687, 1984. doi:10.1175/1520-0485(1984)014<0674:ANMOTV>2.0.CO;2.


M. D. Cox. Isopycnal diffusion in a z-coordinate ocean model. Ocean modelling (unpublished manuscripts), 74:1–5, 1987.


B. Cushman-Roisin and J.-M. Beckers. Introduction to Geophysical Fluid Dynamics, 2nd Edition. Academic Press, New York, 2011.


G. Danabasoglu and J.C. McWilliams. Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J. Clim., 8(8):2967–2987, 1995. doi:10.1175/1520-0442(1995)008<2967:SOTGOC>2.0.CO;2.


G. Danabasoglu, J. C. McWilliams, and P. R. Gent. The role of mesoscale tracer transports in the global ocean circulation. Science, 264(5162):1123–1126, 1994. doi:10.1126/science.264.5162.1123.


de Szoeke, R. A. and R. M. Samelson. The duality between the boussinesq and non-boussinesq hydrostatic equations of motion. J. Phys. Oceanogr., 32(8):2194–2203, 2002. doi:10.1175/1520-0485(2002)032<2194:TDBTBA>2.0.CO;2.


G. E. R. Deacon. The hydrology of the southern ocean. Discovery Rept., 15:1–124, 1937.


R. S. Defries and J. R. G. Townshend. NDVI-derived land cover classification at global scales. Int'l J. Rem. Sens., 15:3567–3586, 1994.


J. L. Dorman and P. J. Sellers. A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the simple biosphere model (sib). J. Appl. Meteor., 28:833–855, 1989.


C. O. Dufour, J. Le Sommer, J. D. Zika, M. Gehlen, J. C. Orr, P. Mathiot, and B. Barnier. Standing and transient eddies in the response of the southern ocean meridional overturning to the southern annular mode. J. Clim., 25(20):6958 – 6974, 2012. doi:10.1175/JCLI-D-11-00309.1.


D. R. Durrann. The third-order Adams-Bashforth method: an attractive alternative to leapfrog time differencing. Mon. Wea. Rev., 119:702–720, 1991. doi:10.1175/1520-0493(1991)119<0702:TTOABM>2.0.CO;2.


J.-C. Dutay, J. L. Bullister, S. C. Doney, J. C. Orr, R. Najjar, K. Caldeira, J.-M. Campin, H. Drange, M. Follows, Y. Gao, N. Gruber, M. W. Hecht, A. Ishida, F. Joos, K. Lindsay, G. Madec, E. Maier-Reimer, J. C. Marshall, R. J. Matear, P. Monfray, A. Mouchet, G.-K. Plattner, J. Sarmiento, R. Schlitzer, R. Slater, I. J. Totterdell, M.-F. Weirig, Y. Yamanaka, and A. Yool. Evaluation of ocean model ventilation with cfc-11: comparison of 13 global ocean models. Ocean Modelling, 4(2):89–120, 2002. doi:10.1016/S1463-5003(01)00013-0.


S. Dutkiewicz, A. Sokolov, J. Scott, and and P. Stone. A three-dimensional ocean-seaice-carbon cycle model and its coupling to a two-dimensional atmospheric model: uses in climate change studies. Technical Report 122, MIT Joint Program of the Science and Policy of Global Change, Cambridge, MA, USA, 2005. URL: http://web.mit.edu/globalchange/www/MITJPSPGC_Rpt122.pdf.


K. Döös and D.J. Webb. The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24:429–442, 1994. doi:10.1175/1520-0485(1994)024<0429:TDCATO>2.0.CO;2.


I. Fenty and P. Heimbach. Coupled sea ice–ocean-state estimate in the Labrador Sea and Baffin Bay. J. Phys. Oceanogr., 43(5):884–904, 2013. doi:10.1175/JPO-D-12-065.1.


R. Ferrari, S. M. Griffies, A. J. G. Nurser, and G. K. Vallis. A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modelling, 32(3-4):143–156, 2010. doi:10.1016/j.ocemod.2010.01.004.


R. Ferrari, J. C. McWilliams, V. M. Canuto, and M. Dubovikov. Parameterization of eddy fluxes near oceanic boundaries. J. Clim., 21:2770–2789, 2008. doi:10.1175/2007JCLI1510.1.


R. Ferrari and R. A. Pumb. Residual circulation in the ocean. In Proceedings of the 13th 'Aha Huliko'a Hawaiian Winter Workshop 13, 219–228. 2003. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=


D. Ferreira, J. Marshall, and P. Heimbach. Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35:1891–1910, 2005. doi:10.1175/JPO2785.1.


G. M. Flato and III W. D. Hibler. Modeling pack ice as a cavitating fluid. J. Phys. Oceanogr., 22:626–651, 1992.


P. Fofonoff and Jr. R. Millard. Algorithms for computation of fundamental properties of seawater. UNESCO Technical Papers in Marine Science 44, UNESCO, Paris, 1983.


M. J. Follows, T. Ito, and S. Dutkiewicz. On the solution of the carbonate chemistry system in ocean biogeochemistry models. Ocean Modelling, 12(3-4):290–301, 2006. doi:10.1016/j.ocemod.2005.05.004.


G. Forget, J.-M. Campin, P. Heimbach, C. N. Hill, R. M Ponte, and C. Wunsch. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development, 8(10):3071–3104, 2015. URL: http://www.geosci-model-dev.net/8/3071/2015/, doi:10.5194/gmd-8-3071-2015.


Ichiro Fukumori, Ou Wang, William Llovel, Ian Fenty, and Gael Forget. A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the arctic ocean and the nordic seas. Progress in Oceanography, 134(0):152 – 172, 2015. URL: http://www.sciencedirect.com/science/article/pii/S0079661115000245, doi:http://dx.doi.org/10.1016/j.pocean.2015.01.013.


P. Gaspar, Y. Grégoris, and J.-M. Lefevre. A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at station papa and long-term upper ocean study site. J. Geophys. Res., 95(C9):16,179–16,193, 1990. doi:10.1029/JC095iC09p16179.


P. R. Gent. The Gent–McWilliams parameterization: 20/20 hindsight. Ocean Modelling, 39(1-2):2–9, 2011. doi:10.1016/j.ocemod.2010.08.002.


P. R. Gent and J. C. McWilliams. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20(1):150–155, 1990. doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.


P. R. Gent, J. Willebrand, T. J. McDougall, and J. C. McWilliams. Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25(4):463–474, 1995. doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.


R. Gerdes, C. Koberle, and J. Willebrand. The influence of numerical advection schemes on the results of ocean general circulation models. Clim. Dynamics, 5(4):211–226, 1991. doi:10.1007/BF00210006.


R. Giering. Tangent linear and adjoint model compiler. users manual 1.4 (tamc version 5.2). Technical Report, Massachusetts Institute of Technology, Cambridge, MA, 1999. URL: http:autodiff.com/tamc/tamc_manual.ps.gz.


R. Giering. Tangent linear and adjoint biogeochemical models. In P. Kasibhatla, M. Heimann, P. Rayner, N. Mahowald, R. G. Prinn, and D. E. Hartley, editors, Inverse Methods in Global Biogeochemical Cycles, pages 33–48. American Geophysical Union, Washington, D.C., 2000. doi:10.1029/GM114p0033.


R. Giering and T. Kaminski. Recipes for adjoint code construction. ACM Transactions on Mathematical Software, 24(4):437–474, 1998. doi:10.1145/293686.293695.


J. C. Gilbert and C. Lemaréchal. Some numerical experiments with variable-storage quasi-newton algorithms. Math. Programming, 45:407–435, 1989. doi:10.1007/BF01589113.


A. E. Gill. Atmosphere-Ocean Dynamics. Academic Press, New York, 1982.


D. N. Goldberg. A variationally-derived, depth-integrated approximation to a higher-order glaciologial flow model. J. of Glaciology, 57:157–170, 2011.


D. N. Goldberg and P. Heimbach. Parameter and state estimation with a time-dependent adjoint marine ice sheet model. The Cryosphere, 7:1659–1678, 2013.


D. N. Goldberg, P. Heimbach, I. Joughin, and B. Smith. Committed retreat of smith, pope, and kohler glaciers over the next 30 years inferred by transient model calibration. The Cryosphere, 9:2429–2446, 2015.


D. N. Goldberg, S. H. K. Narayanan, L. Hascoet, and J. Utke. An optimized treatment for algorithmic differentiation of an important glaciological fixed-point problem. Geoscientific Model Development, 9:1891–1904, 2016.


A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optimization Methods and Software, 1:35–54, 1992.


A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Second Edition. SIAM, Philadelphia, 2008.


S. M. Griffies. The Gent-McWilliams skew flux. J. Phys. Oceanogr., 28:831–841, 1998. doi:10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2.


S. M. Griffies, A. Gnanadesikan, R. C. Pacanowski, V. Larichev, J. K. Dukowicz, and R. D. Smith. Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28:805–830, 1998. doi:10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2.


S. M. Griffies and R. W. Hallberg. Biharmonic friction with a smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128(8):2935–2946, 2000.


K. Grosfeld, R. Gerdes, and J. Determann. Thermohaline circulation and interaction between ice shelf cavities and the adjacent open water. J. Geophys. Res. Oceans, 102(C7):15595–15610, 1997. doi:10.1029/97JC00891.


R. L. Haney. Surface thermal boundary conditions for ocean circulation models. J. Phys. Oceanogr., 1(4):241–248, 1971. doi:10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2.


F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8:2182–2189, 1965.


P. Heimbach, C. Wunsch, R. M. Ponte, G. Forget, C. Hill, and J. Utke. Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: toward observing system design. Deep Sea Research Part II: Topical Studies in Oceanography, 58(17):1858–1879, 2011.


I. M. Held and M. J. Suarez. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bulletin of the American Meteorological Society, 75(10):1825–1830, 1994.


H. M. Helfand and J. C. Labraga. Design of a non-singular level 2.5 second-order closure model for the prediction of atmospheric turbulence. J. Atmos. Sci., 45:113–132, 1988.


H. M. Helfand and S. D. Schubert. Climatology of the simulated great plains low-level jet and its contribution to the continental moisture budget of the united states. J. Clim., 8:784–806, 1995.


Hellmer, H. H. and D. J. Olbers. A two-dimensional model of the thermohaline circulation under an ice shelf. Antarct. Sci., 1(4):325–336, 1989. doi:10.1017/S0954102089000490.


W. D. Hibler and E. M. Schulson. On modeling the anisotropic failure and flow of flawed sea ice. J. Geophys. Res. Oceans, 105(C7):17105–17120, 2000. doi:10.1029/2000JC900045.


W. D. Hibler, III. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9:815–846, 1979.


W. D. Hibler, III. Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 1:1943–1973, 1980.


W. D. Hibler, III. The role of sea ice dynamics in modeling co2 increases. In J. E. Hansen and T. Takahashi, editors, Climate processes and climate sensitivity, volume 29 of Geophysical Monograph, pages 238–253. AGU, Washington, D.C., 1984.


W. D. Hibler, III and K. Bryan. A diagnostic ice-ocean model. J. Phys. Oceanogr., 17(7):987–1015, 1987.


C. Hill, A. Adcroft, D. Jamous, and J. Marshall. A strategy for terascale climate modeling. In In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors in Meteorology, 406–425. World Scientific, 1999.


C. Hill, V. Bugnion, M. Follows, and J. Marshall. Evaluating carbon sequestration efficiency in an ocean circulation model by adjoint sensitivity analysis. J. Geophys. Res. Oceans, 2004. doi:10.1029/2002JC001598.


C. Hill and J. Marshall. Application of a parallel navier-stokes model to ocean circulation in parallel computational fluid dynamics. In N. Satofuka A. Ecer, J. Periaux and S. Taylor, editors, Implementations and Results Using Parallel Computers, pages 545–552. Elsevier Science B.V.: New York, 1995.


J. C. Hoe, C. Hill, and A. Adcroft. A personal supercomputer for climate research. In SC’99: Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, 59. IEEE, 1999. doi:10.1109/SC.1999.10009.


D. M Holland and A. Jenkins. Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29:1787–1800, 1999. doi:10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.


W. R. Holland. The role of mesoscale eddies in the general circulation of the ocean-numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr., 8:363–392, 1978.


E. C. Hunke. Viscous-plastic sea ice dynamics with the EVP model: linearization issues. J. Comput. Phys., 170:18–38, 2001. doi:10.1006/jcph.2001.6710.


E. C. Hunke and J. K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr., 27:1849–1867, 1997. doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.


J. K. Hutchings, H. Jasak, and S. W. Laxon. A strength implicit correction scheme for the viscous-plastic sea ice model. Ocean Modelling, 7(1–2):111–133, 2004. doi:10.1016/S1463-5003(03)00040-4.


IOC, SCOR, and IAPSO. The international thermodynamic equation of seawater 2010 (teos-10): calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, UNESCO (English), Paris, France, 2010. URL: http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.


C. F. Ip, W. D. Hibler, and G. M. Flato. On the effect of rheology on seasonal sea-ice simulations. Ann. Glaciol., 15:17–25, 1991.


D. R. Jackett and T. J. McDougall. Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Ocean. Technol., 12(2):381–389, 1995. doi:10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.


Jamart, B. M. and J. Ozer. Numerical boundary layers and spurious residual flows. J. Geophys. Res., 91(C9):10621– 10631, 1986. doi:10.1029/JC091iC09p10621.


A. Jenkins, H. H. Hellmer, and D. M. Holland. The role of meltwater advection in the formulation of conservative boundary conditions at an ice-ocean interface. J. Phys. Oceanogr., 31:285–296, 2001. doi:10.1175/1520-0485(2001)031<0285:TROMAI>2.0.CO;2.


S. Jiang, P. H. Stone, and P. Malanotte-Rizzoli. An assessment of the geophysical fluid dynamics laboratory ocean model with coarse resolution: annual-mean climatology. J. Geophys. Res., 104(C11):25623–25645, 1999. doi:10.1029/1999JC900095.


J. R. Jordan, P. R. Holland, D. Goldberg, K. Snow, R. Arthern, J.-M. Campin, P. Heimbach, and A. Jenkins. Ocean-forced ice-shelf thinning in asynchronously coupled ice-ocean model. J. Geophys. Res. Oceans, 123:864–882, 2018. doi:10.1002/2017JC013251.


E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph. The nmc/ncar 40-year reanalysis project. Bull. Am. Met. Soc., 77:437–471, 1996. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.


M. Kimmritz, S. Danilov, and M. Losch. On the convergence of the modified elastic-viscous-plastic method of solving for sea-ice dynamics. J. Comput. Phys., 296:90–100, 2015. doi:10.1016/j.jcp.2015.04.051.


M. Kimmritz, S. Danilov, and M. Losch. The adaptive EVP method for solving the sea ice momentum equation. Ocean Modelling, 101:59–67, 2016. doi:10.1016/j.ocemod.2016.03.004.


J. M. Klymak and S. M. Legg. A simple mixing scheme for models that resolve breaking internal waves. Ocean Modelling, 33:224–234, 2010. doi:10.1016/j.ocemod.2010.02.005.


J. Kondo. Air-sea bulk transfer coefficients in diabatic conditions. Bound. Layer Meteorol., 9:91–112, 1975.


R. D. Koster and M. J. Suarez. A simplified treatment of sib's land surface albedo parameterization. NASA Technical Memorandum 104538, National Aeronautics and Space Administration, NASA; Goddard Space Flight Center; Greenbelt (MD), 20771; USA, 1991. http://www.gmao.nasa.gov/.


R. D. Koster and M. J. Suarez. Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97(D3):2697–2715, 1992. doi:10.1029/91JD01696.


Christof König Beatty and David M. Holland. Modeling landfast sea ice by adding tensile strength. J. Phys. Oceanogr., 40(1):185–198, 2010. URL: http://journals.ametsoc.org/doi/abs/10.1175/2009JPO4105.1 (visited on 2017-05-15), doi:10.1175/2009JPO4105.1.


A. A. Lacis and J. E. Hansen. A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci., 31:118–133, 1974.


W. G. Large, G. Danabasoglu, S. C. Doney, and J. C. McWilliams. Sensitivity to surface forcing and boundary layer mixing in a global ocean model: annual-mean climatology. J. Phys. Oceanogr., 27(11):2418–2447, 1997. doi:10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2.


W. G. Large, J. C. McWilliams, and S. C. Doney. Oceanic vertical mixing: a review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32:363–403, 1994. doi:10.1029/94RG01872.


W. G. Large and S. Pond. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11:324–336, 1981. doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.


C. E. Leith. Large eddy simulation of complex engineering and geophysical flows. Physics of Fluids, 10:1409–1416, 1968.


C. E. Leith. Stochastic models of chaotic systems. Physica D., 98:481–491, 1996.


J.-F. Lemieux, D. Knoll, B. Tremblay, D. M. Holland, and M. Losch. A comparison of the Jacobian-free Newton-Krylov method and the EVP model for solving the sea ice momentum equation with a viscous-plastic formulation: a serial algorithm study. J. Comput. Phys., 231(17):5926–5944, 2012. doi:10.1016/j.jcp.2012.05.024.


J.-F. Lemieux, B. Tremblay, J. Sedláček, P. Tupper, S. Thomas, D. Huard, and J.-P. Auclair. Improving the numerical convergence of viscous-plastic sea ice models with the Jacobian-free Newton-Krylov method. J. Comput. Phys., 229:2840–2852, 2010. doi:10.1016/j.jcp.2009.12.011c.


M. Leppäranta. A growth model for black ice, snow ican and snow thickness in subarctic basins. Nordic Hydrology, 14:59–70, 1983.


S. Levitus and T. P. Boyer. World ocean atlas 1994 volume 3: salinity. NOAA Technical Memorandum NOAA Atlas NESDIS 3, National Oceanic and Atmospheric Administration, Washington, DC; USA, 1994.


S. Levitus and T. P. Boyer. World ocean atlas 1994 volume 3: temperature. NOAA Technical Memorandum NOAA Atlas NESDIS 4, National Oceanic and Atmospheric Administration, Washington, DC; USA, 1994. URL: ftp://ftp.nodc.noaa.gov/pub/data.nodc/woa/PUBLICATIONS/WOA94_vol4a.pdf.


W. H. Lipscomb. Remapping the thickness distribution in sea ice models. J. Geophys. Res., 106(C7):13989–14000, 2001. doi:10.1029/2000JC000518.


W. H. Lipscomb, E. C. Hunke, W. Maslowski, and J. Jakacki. Ridging, strength, and stability in high-resolution sea ice models. J. Geophys. Res., 112:1–18, 2007. doi:10.1029/2005JC003355.


M. Losch. Modeling ice shelf cavities in a z-coordinate ocean general circulation model. J. Geophys. Res. Oceans, 113(C08043):129–144, 2008. doi:10.1029/2007JC004368.


M. Losch, A. Fuchs, J.-F. Lemieux, and A. Vanselow. A parallel Jacobian-free Newton-Krylov solver for a coupled sea ice-ocean model. J. Comput. Phys., 257(A):901–910, 2014. doi:10.1016/j.jcp.2013.09.026.


M. Losch, D. Menemenlis, J.-M. Campin, P. Heimbach, and C. Hill. On the formulation of sea-ice models. Part 1: effects of different solver implementations and parameterizations. Ocean Modelling, 33(1–2):129–144, 2010. doi:10.1016/j.ocemod.2009.12.008.


D. R. MacAyeal. Large-scale ice flow over a viscous basal sediment: theory and application to Ice Stream B, Antarctica. Journal of Geophysical Research – Solid Earth, 94:4071–4087, 1989.


J. Mak, J. R. Maddison, D. P. Marshall, and D. R. Munday. Implementation of a geometrically informed and energetically constrained mesoscale eddy parameterization in an ocean circulation model. J. Phys. Oceanogr., 48(10):2363–2382, 2018. doi:10.1175/JPO-D-18-0017.1.


J. Mak, D. P. Marshall, G. Madec, and J. R. Maddison. Acute sensitivity of global ocean circulation and heat content to eddy energy dissipation time-scale. Geophys. Res. Lett., 49(8):e2021GL097259, 2022. doi:10.1029/2021GL097259.


S. Manabe, K. Bryan, and M. J. Spelman. A global ocean-atmosphere climate model with seasonal variation for future studies of climate sensitivity. Dyn. Atmos. Oceans, 3:393–426, 1979. doi:10.1016/0377-0265(79)90021-6.


J. Marotzke, R. Giering, K. Q. Zhang, D. Stammer, C. Hill, and T. Lee. Construction of the adjoint mit ocean general circulation model and application to atlantic heat transport variability. J. Geophys. Res., 104(C12):29,529–29,547, 1999. doi:10.1029/1999JC900236.


D. P. Marshall, J. R. Maddison, and P. Berloff. A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42:539–557, 2012. doi:10.1175/JPO-D-11-048.1.


J. Marshall, A. Adcroft, J.-M. Campin, C. Hill, and A. White. Atmosphere-ocean modeling exploiting fluid isomorphisms. Mon. Wea. Rev., 132:2882–2894, 2004. URL: http://mitgcm.org/pdfs/a_o_iso.pdf, doi:10.1175/MWR2835.1.


J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey. A finite-volume, incompressible navier stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102(C3):5753–5766, 1997. URL: http://mitgcm.org/pdfs/96JC02775.pdf, doi:10.1029/96JC02775.


J. Marshall, C. Hill, L. Perelman, and A. Adcroft. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102(C3):5733–5752, 1997. URL: http://mitgcm.org/pdfs/96JC02776.pdf, doi:10.1029/96JC02776.


J. Marshall, H. Jones, and C. Hill. Efficient ocean modeling using non-hydrostatic algorithms. J. Mar. Sys., 18:115–134, 1998. URL: http://mitgcm.org/pdfs/journal_of_marine_systems_1998.pdf, doi:10.1016/S0924-7963\%2898\%2900008-6.


J. Marshall and T. Radko. Residual-mean solutions for the antarctic circumpolar current and its associated overturning circulation. J. Phys. Oceanogr., 33:2341–2354, 2003. doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.


J. Marshall, E. Shuckburgh, H. Jones, and C. Hill. Estimates and implications of surface eddy diffusivity in the southern ocean derived from tracer transport. J. Phys. Oceanogr., 36:1806–1821, 2006. doi:10.1175/JPO2949.1.


J. Marshall and K. Speer. Closure of the meridional overturning circulation through southern ocean upwelling. Nature Geosci., 5:171–180, 2012. doi:10.1038/ngeo1391.


J. H. Martin, G. A. Knauer, D. M. Karl, and W. W. Broenkow. Vertex: carbon cycling in the northeast pacific. Deep Sea Res. Part A. Oceanogr. Res. Papers, 34(2):267–285, 1987. doi:10.1016/0198-0149(87)90086-0.


T. McDougall and P. M. Barker. Getting started with teos-10 and the gibbs seawater (gsw) oceanographic toolbox. ISBN 978-0-646-55612-5, SCOR/IAPSO WG127, 2011. URL: http://www.teos-10.org/pubs/gsw/pdf/Getting_Started.pdf.


T. J. McDougall, D. R. Jackett, D. G. Wright, and R. Feistel. Accurate and computationally efficient algorithms for potential temperature and density of seawater. J. Atmos. Ocean. Technol., 20(5):730–741, 2003. doi:10.1175/1520-0426(2003)20<730:AACEAF>2.0.CO;2.


G. McKinley, M. J. Follows, and J. C. Marshall. Mechanisms of air-sea co2 flux variability in the equatorial pacific and the north atlantic. Global Biogeochem. Cycles, 2004. doi:10.1029/2003GB002179.


G. L. Mellor and T. Yamada. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20(4):851– 875, 1982. doi:10.1029/RG020i004p00851.


F. J. Millero. History of the equation of state of seawater. Oceanography, 23:18–33, 2010. doi:10.5670/oceanog.2010.21.


A. Molod. Running GCM physics and dynamics on different grids: algorithm and tests. Tellus, 61A:381–393, 2009.


S. Moorthi and M. J. Suarez. Relaxed arakawa schubert: a parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120:978–1002, 1992.


J. N. Moum. Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res., 101(C6):14095–14109, 1996. doi:10.1029/96JC00507.


G. Munhoven. Mathematics of the total alkalinity–ph equation – pathway to robust and universal solution algorithms: the solvesaphe package v1.0.1. Geoscientific Model Development, 6(4):1367–1388, 2013. URL: https://www.geosci-model-dev.net/6/1367/2013/, doi:10.5194/gmd-6-1367-2013.


W. H. Munk. On the wind-driven ocean circulation. J. Meteor., 7:79–932, 1950.


U. Naumann, J. Utke, P. Heimbach, C. Hill, D. Ozyurt, C. Wunsch, M. Fagan, N. Tallent, and and M. Strout. Adjoint code by source transformation with OpenAD/F. In Pieter Wesseling, Jacques Périaux, and Eugenio Oñate, editors, European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006). TU Delft, The Netherlands, 2006.


M. Nikurashin and G. Vallis. A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42:1652–1667, 2012. doi:10.1175/JPO-D-11-0189.1.


D. Olbers and M. Visbeck. A model of the zonally averaged stratification and overturning in the southern ocean. J. Phys. Oceanogr., 35:1190–1205, 2004. doi:10.1175/JPO2750.1.


I. Orlanski. A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21:251–269, 1976.


R. C. Pacanowski and S. G. Philander. Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11:1443–1451, 1981. doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.


T. Paluszkiewicz and R. D. Romea. A one-dimensional model for the parameterization of deep convection in the ocean. Dyn. Atmos. Oceans, 26:95–130, 1997.


H. A. Panofsky. Tower micrometeorology. In D. A. Haugen, editor, Workshop on Micrometeorology. American Meteorological Society, 1973.


C. L. Parkinson and W. M. Washington. A large-scale numerical model of sea ice. J. Geophys. Res., 84(C1):311–337, January 1979. doi:10.1029/JC084iC01p00311.


R. Pawlowicz. Key physical variables in the ocean: temperature, salinity, and density. Nature Education Knowledge, 4(4):13, 2013. URL: https://www.nature.com/scitable/knowledge/library/key-physical-variables-in-the-ocean-temperature-102805293/.


J. Pedlosky. Geophysical Fluid Dynamics, Second Edition. Spring-Verlag, New York, 1987.


J. Pedlosky. Ocean Circulation Theory. Spring-Verlag, New York, 1996.


D. Potter. Computational Physics. John Wiley, New York, 1973.


M. J. Prather. Numerical advection by conservation of second-order moments. J. Geophys. Res., 91(D6):6671–6681, 1986. doi:10.1029/JD091iD06p06671.


M. H. Redi. Oceanic Isopycnal Mixing by Coordinate Rotation. J. Phys. Oceanogr., 12(10):1154–1158, oct 1982. doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.


J. Restrepo, G. Leaf, and A. Griewank. Circumventing storage limitations in variational data assimilation studies. SIAM J. Sci. Comput., 19:1586–1605, 1998.


D. Ringeisen, M. Losch, L. B. Tremblay, and N. N. Hutter. Simulating intersection angles between conjugate faults in sea ice with different viscous–plastic rheologies. The Cryosphere, 13(4):1167–1186, 2019. doi:10.5194/tc-13-1167-2019.


D. Ringeisen, L. B. Tremblay, and M. Losch. Non-normal flow rules affect fracture angles in sea ice viscous-plastic rheologies. The Cryosphere Discussions, 2020:1–24, 2020. doi:10.5194/tc-2020-153.


C. J. Roach, H. E. Phillips, N. L. Bindoff, and S. R. Rintoul. Detecting and characterizing ekman currents in the southern ocean. J. Phys. Oceanogr., 45:1205–1223, 2015. doi:10.1175/JPO-D-14-0115.1.


P. L. Roe. Some contributions to the modelling of discontinuous flows. In B.E. Engquist, S. Osher, and R.C.J. Somerville, editors, Large-Scale Computations in Fluid Mechanics, volume 22 of Lectures in Applied Mathematics, pages 163–193. American Mathematical Society, Providence, RI, 1985.


F. Roquet, G. Madec, T. J. McDougall, and P. M. Barker. Accurate polynomial expressions for the density and specific volume of seawater using the teos-10 standard. Ocean Modelling, 90:29–43, 2015. doi:10.1016/j.ocemod.2015.04.002.


J. E. Rosenfield, M. R. Schoeberl, and M. A. Geller. A computation of the stratospheric diabatic circulation using an accurate radiative transfer model. J. Atmos. Sci., 44:859–876, 1987.


D. A. Rothrock. The energetics of the plastic deformation of pack ice by ridging. J. Geophys. Res., 80(33):4514–4519, 1975. doi:10.1029/JC080i033p04514.


R. Sadourny. The dynamics of finite-difference models of the shallow-water equations. J. Atmos. Sci., 32:680–689, 1975. doi:10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2.


J.-B. Sallée. Southern ocean warming. Oceanography, 31:52 – 62, 2018. doi:10.5670/oceanog.2018.215.


H. E. Seim and M. C. Gregg. Detailed observations of a naturally occurring shear instability. J. Geophys. Res., 99(C5):10049–10073, 1994. doi:10.1029/94JC00168.


A. J. Semtner, Jr. A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6:379–389, 1976.


R. Shapiro. Smoothing, filtering, and boundary effects. Rev. Geophys. Space Phys., 8(2):359–387, 1970.


J. Smagorinsky. General circulation experiments with the primitive equations i: the basic experiment. Mon. Wea. Rev., 91(3):99–164, 1963.


J. Smagorinsky. Large eddy simulation of complex engineering and geophysical flows. In B. Galperin and S.A. Orszag, editors, Evolution of Physical Oceanography, pages 3–36. Cambridge University Press, 1993.


T. Smith and P. Heimbach. Atmospheric origins of variability in the South Atlantic meridional overturning circulation. J. Clim., 32(5):1483–1500, 2019. doi:10.1175/JCLI-D-18-0311.1.


P. K. Smolarkiewicz. Comment on "a positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes". Mon. Wea. Rev., 117(11):2626–2632, 1989. doi:10.1175/1520-0493(1989)117<2626:COPDAS>2.0.CO;2.


K. S.R. Rintoul Speer and B. Sloyan. The diabatic Deacon cell. J. Phys. Oceanogr., 30:3212–3222, 2000. doi:10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2.


D. Stammer, C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C. Hill, and J. Marshall. The global ocean circulation and transports during 1992 - 1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107(C9):3118, 2002. doi:10.1029/2001JC000888.


D. Stammer, C. Wunsch, R. Giering, Q. Zhang, J. Marotzke, J. Marshall, and C. Hill. The global ocean circulation estimated from TOPEX/POSEIDON altimetry and a general circulation model. CGCS Report Series 49, Massachusetts Institute of Technology, Cambridge, MA, 1997. URL: https://cgcs.mit.edu/publications/cgcs-report/global-ocean-circulation-estimated-topexposeidon-altimetry-and-mit-general.


D. P. Stevens. On open boundary conditions for three dimensional primitive equation ocean circulation models. Geophys. Astrophys. Fl. Dyn., 51:103–133, 1990.


K.D. Stewart, A.McC. Hogg, S.M. Griffies, A.P. Heerdegen, M.L. Ward, P. Spence, and M.H. England. Vertical resolution of baroclinic modes in global ocean models. Ocean Modelling, 113:50–65, 2017. doi:10.1016/j.ocemod.2017.03.012.


H. Stommel. The western intensification of wind-driven ocean currents. Trans. Am. Geophys. Union, 29:206, 1948.


Y. C. Sud and A. Molod. The roles of dry convection, cloud-radiation feedback processes and the influence of recent improvements in the parameterization of convection in the gla gcm. Mon. Wea. Rev., 116:2366–2387, 1988.


H. U. Sverdrup. On vertical circulation in the ocean due to the action of the wind with application to conditions within the antarctic circumpolar current. Discovery Rept., 7:141–169, 1933.


L. L. Takacs and M. J. Suarez. Dynamical aspects of climate simulations using the geos general circulation model. NASA Technical Memorandum 104606 Volume 10, National Aeronautics and Space Administration, NASA; Goddard Space Flight Center; Greenbelt (MD), 20771; USA, 1996. http://www.gmao.nasa.gov/.


A. S. Thorndike, D. A. Rothrock, G. A. Maykut, and R. Colony. The thickness distribution of sea ice. J. Geophys. Res., 80:4501–4513, 1975.


S. A. Thorpe. Turbulence and mixing in a scottish loch. Phil. Trans. R. Soc. Lond., 286:125–181, 1977.


K. Trenberth, J. Olson, and W. Large. A global wind stress climatology based on ecmwf analyses. NCAR Technical Note NCAR/TN-338+STR, National Center for Atmospheric Research, Boulder, CO, 1989. doi:10.5065/D6ST7MR9.


K. M. Trenberth, J. Olson, and W. G. Large. The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr., 20(11):1742–1760, 1990. doi:10.1175/1520-0485(1990)020<1742:TMACIG>2.0.CO;2.


M. Ungermann, L.B. Tremblay, T. Martin, and M. Losch. Impact of the ice strength formulation on the performance of a sea ice thickness distribution model in the Arctic. J. Geophys. Res., 122(3):2090–2107, 2017. URL: http://dx.doi.org/10.1002/2016JC012128, doi:10.1002/2016JC012128.


J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and C. Wunsch. OpenAD/F: a modular open-source tool for automatic differentiation of fortran codes. ACM Transactions on Mathematical Software (TOMS), 34(4):18, 2008. doi:10.1145/1377596.1377598.


G. K. Vallis. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2nd Edition. Cambridge University Press, 17. doi:10.1017/9781107588417.


G. Veronis. The role of models in tracer studies. In Numerical Models of the Ocean Circulation, 133–146. Washington, D.C., 1975. Nat. Acad. of Sci. URL: https://books.google.com/books?hl=en&lr=&id=9S8rAAAAYAAJ&oi=fnd&pg=PA133&dq=Veronis,+G.,+1975:+The+role+of+models+in+tracer+studies.+Numerical+Models+of+the+Ocean+Circulation,+Natl.+Acad.+Sci.,+133%E2%80%93146.+&ots=xitpIWzXX3&sig=fXxEToFbFCutn1-7ZbMoY4oDEFE#v=onepage&q&f=false.


J. Viebahn and C. Eden. Standing eddies in the meridional overturning circulation. J. Phys. Oceanogr., 42(9):1486 – 1508, 2012. doi:10.1175/JPO-D-11-087.1.


M. Visbeck, J. Marshall, T. Haine, and M. Spall. Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27(3):381–402, 1997. doi:10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.


R. Wajsowicz. A consistent formulation of the anisotropic stress tensor for use in models of the large-scale ocean circulation. J. Comput. Phys., 105(2):333–338, 1993.


R. Wanninkhof. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97(C5):7373–7382, 1992. doi:10.1029/92JC00188.


A. Weaver and P. Courtier. Correlation modelling on the sphere using a generalized diffusion equation. Q. J. R. Meteorol. Soc., 127:1815–1846, 2001. doi:10.1002/qj.49712757518.


J. C. Wesson and M. C. Gregg. Mixing at camarinal sill in the strait of gibraltar. Q. J. R. Meteorol. Soc., 99 (C5):9847–9878, 1994.


A. A. White and R. A. Bromley. Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the coriolis force. Q. J. R. Meteorol. Soc., 121:399–418, 1995. doi:10.1002/qj.49712152208.


G. P. Williams. Numerical integration of the three-dimensional navier stokes equations for incompressible flow. J. Fluid Mech., 37:727–750, 1969.


M. Winton. A reformulated three-layer sea ice model. J. Atmos. Ocean. Technol., 17:525–531, 2000. doi:10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.


C. L. Wolfe. Approximations to the ocean’s residual circulation in arbitrary tracer coordinates. Ocean Modelling, 75:20 – 35, 2014. doi:10.1016/j.ocemod.2013.12.004.


Yamanaka Y. and E. Tajika. Role of dissolved organic matter in the marine biogeochemical cycle: studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 11(4):599–612, 1997. doi:10.1029/97GB02301.


A. M. Yaglom and B. A. Kader. Heat and mass transfer between a rough wall and turbulent fluid flow at high reynolds and peclet numbers. J. Fluid Mech., 62:601–623, 1974.


T. Yamada. A numerical experiment on pollutant dispersion in a horizontally-homogeneous atmospheric boundary layer. Atmos. Environ., 11:1015–1024, 1977.


J. Zhang and W. D. Hibler, III. On an efficient numerical method for modeling sea ice dynamics. J. Geophys. Res., 102(C4):8691–8702, 1997. doi:10.1029/96JC03744.


J. Zhang and D. A. Rothrock. Effect of sea ice rheology in numerical investigations of climate. J. Geophys. Res. Oceans, 110(C8):C08014, 2005. doi:10.1029/2004JC002599.


J. Zhang, III W. D. Hibler, M. Steele, and D. A. Rothrock. Arctic ice-ocean modeling with and without climate restoring. J. Phys. Oceanogr., 28:191–217, 1998.


J. Zhou, Y. C. Sud, and K.-M. Lau. Impact of orographically induced gravity wave drag in the gla gcm. Q. J. R. Meteorol. Soc., 122:903–927, 1995.